
Evaluating XPath Queries
with XML Labeling Schemes

Prof. Dr. François Bry

based on slides and articles by Georg Gottlob, Christoph Koch,
Thorsten Grust & Felix Weigel & Tim Furche

CHAPTER 3. LABELLING SCHEMES FOR XML AND TREE DATABASES

a. Pre/Post b. Start/End

c. Order/Size d. Pre/Max

Figure 3.4: Two-dimensional representation of selected trees in Figure 3.3 on the preceding page:

a. pre/post plane for Figure 3.3 d.; b. start/end plane for Figure 3.3 e.; c. pre/size plane for Figure 3.3 b.;

d. pre/max plane for Figure 3.3a. Descendants of a particular node v lie in the shaded area: a. range

covered by Child+-images of v = 〈6,5〉 (light/dark: without/with shrink-wrapping); b. Child+-images of

v= [13,18]; c. Child+-images of v= 〈6,1〉; d. Child+-images of v= 〈6,7〉.

Structural Summaries as a Core Technology for Efficient XML Retrieval 25

XPath Repetition

1

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

XPath Axes

3

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Navigational XPath
Syntax

4

��� ����������� ������

(more precisely that have node children with the same label):

/child::conference/descendant::paper/child::author[child::node()

=

� /child::conference/child::member/child::node()]

In addition to the strict axis plus node test notation, XPath uses also an
abbreviated syntax where child axis may be omitted, descendant is (roughly)
abbreviated by // etc. In the following, we only use the full syntax. We
also limit ourselves to the core feature of XPath as discussed here and
thus present a view of XPath similar to Navigational XPath of [���] and
[��]. Due to [���], we also limit ourselves to forward axes such as child and
following, rewriting expressions with reverse axes such as parent, ancestor, or
preceding where necessary.

�.�.� ������ ��� ���������

XML tree as
relational
structure

Following [��], we de�ne the semantics of XPath over a relational structure
as introduced in Section �.�.�: An XML-tree is considered a relational
structure T over the schema ((Labλ)λ∈Σ , Rchild , Rnest-sibling , relRoot). �e
nodes of this tree are labeled using the symbols from σ which are queried
usingLλ (note, that λ is a single label not a label set as in the graph relations
of Chapter �).�e parent-child relations are represented byRchild.�e order
between siblings is represented by Rnest-sibling.�e root node of the tree is
identi�ed by root. It is easy to see that this view of XML trees (which is
as in [��] or [���]), makes an XML-tree a speci�c instance of a CIQLog
data graph, cf. Chapter �. �ere are some additional derived relations,
viz. Rdescendant, the transitive, Rdescendant-or-self the transitive re�exive closure
of Rchild, Rfollowing-sibling, the transitive closure of Rnext-sibling, Rself relating each
node to itself, and Rfollowing the composition of R−�descendant-or-self ○Rfollowing-sibling ○
Rdescendant-or-self. Finally, we can compare nodes based on their label using ≅
which contains all pairs of nodes with same label.

Syntax of
navigational
XPath

�e syntax of navigational XPath is de�ned as follows (again following
[���] and [��]):

�path� ::= �step� | �step� ‘/’ �path� | �path� ‘∪’�path� | ‘/’ �path�
�step� ::= �axis� ‘::’ �node-test� | �step�‘[’�quali�er�‘]’
�axis� ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’

| ‘next-sibling’ | ‘following-sibling’ | ‘following’

�node-test� ::= �label� | ‘node()’
�quali�er� ::= �path� | �path� ‘∧’�path� | �path� ‘∨’�path� | ‘¬’�path�

| ‘lab()’ ‘=’ ‘λ’
| �path� ‘=’ �path�

��� ����������� ������

(more precisely that have node children with the same label):

/child::conference/descendant::paper/child::author[child::node()

=

� /child::conference/child::member/child::node()]

In addition to the strict axis plus node test notation, XPath uses also an
abbreviated syntax where child axis may be omitted, descendant is (roughly)
abbreviated by // etc. In the following, we only use the full syntax. We
also limit ourselves to the core feature of XPath as discussed here and
thus present a view of XPath similar to Navigational XPath of [���] and
[��]. Due to [���], we also limit ourselves to forward axes such as child and
following, rewriting expressions with reverse axes such as parent, ancestor, or
preceding where necessary.

�.�.� ������ ��� ���������

XML tree as
relational
structure

Following [��], we de�ne the semantics of XPath over a relational structure
as introduced in Section �.�.�: An XML-tree is considered a relational
structure T over the schema ((Labλ)λ∈Σ , Rchild , Rnest-sibling , relRoot). �e
nodes of this tree are labeled using the symbols from σ which are queried
usingLλ (note, that λ is a single label not a label set as in the graph relations
of Chapter �).�e parent-child relations are represented byRchild.�e order
between siblings is represented by Rnest-sibling.�e root node of the tree is
identi�ed by root. It is easy to see that this view of XML trees (which is
as in [��] or [���]), makes an XML-tree a speci�c instance of a CIQLog
data graph, cf. Chapter �. �ere are some additional derived relations,
viz. Rdescendant, the transitive, Rdescendant-or-self the transitive re�exive closure
of Rchild, Rfollowing-sibling, the transitive closure of Rnext-sibling, Rself relating each
node to itself, and Rfollowing the composition of R−�descendant-or-self ○Rfollowing-sibling ○
Rdescendant-or-self. Finally, we can compare nodes based on their label using ≅
which contains all pairs of nodes with same label.

Syntax of
navigational
XPath

�e syntax of navigational XPath is de�ned as follows (again following
[���] and [��]):

�path� ::= �step� | �step� ‘/’ �path� | �path� ‘∪’�path� | ‘/’ �path�
�step� ::= �axis� ‘::’ �node-test� | �step�‘[’�quali�er�‘]’
�axis� ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’

| ‘next-sibling’ | ‘following-sibling’ | ‘following’

�node-test� ::= �label� | ‘node()’
�quali�er� ::= �path� | �path� ‘∧’�path� | �path� ‘∨’�path� | ‘¬’�path�

| ‘lab()’ ‘=’ ‘λ’
| �path� ‘=’ �path�

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Navigational XPath
Semantics

5

�.� ����������� ����� ���

� axis �Nodes (n) = {(n′ ∶ Raxis(n, n′)}
�

λ
�

Nodes (n) = {(n′ ∶ Labλ(n′)}
� node() �Nodes (n) = Nodes(T)
�

axis::nt[qual]
�

Nodes (n) = {n′ ∶ n′ ∈ � axis �Nodes ∧ n′ ∈ �nt �Nodes ∧ � qual �Bool (n′)}
�

step/path
�

Nodes (n) = {n′′ ∶ n′ ∈ � step �Nodes (n) ∧ n′′ ∈ � path �Nodes (n′)}
�

path� ∪ path� �Nodes
(n) =

�

path�
�

Nodes
(n) ∪ � path� �Nodes

(n)
�

path
�

Bool (n) =
�

path
�

Nodes (n) ≠ �
�

path� ∧ path� �Bool
(n) =

�

path�
�

Bool
(n) ∧ � path� �Bool

(n)
�

path� ∨ path� �Bool
(n) =

�

path�
�

Bool
(n) ∨ � path� �Bool

(n)
�¬path �Bool (n) = ¬ � path �Bool (n)
�

lab() = λ �Bool (n) = Labλ(n)
�

path� = path� �Bool
(n) = ∃n′ , n′′ ∶ n′ ∈ � path� �Nodes

(n) ∧ n′′ ∈ � path� �Nodes
(n)

∧ ≅ (n′ , n′′)

Table ��. Semantics for navigational XPath (following [��])

Semantics of
navigational
XPath

�e semantics of a navigational XPath expression over a relational struc-
ture T representing an XML tree (as de�ned above) is de�ned in Table ��
bymeans of � �Nodes (n)where n is a node, called context node. � �Nodes (n)
associates each XPath expression and context node with a set of nodes that
constitutes the semantics of that expression if evaluated with the given
context node. It uses � �Bool (n) for the semantics of quali�ers under a
context node n.

For details on the semantics as well as di�erences to full XPath see [��].

�.�.� �����������

Translation
examples

Consider again the above examples.�e�rst (/descendant::paper/child::author)
is translated to the following CIQLog rule:

ans(v�) ←� root(v�) ∧ �����+(v�,v�) ∧ L(v�,paper) ∧
� �����(v�,v�) ∧ L(v�,author)
We use ans as the canonical answer predicate containing the (single) an-
swer variable whose bindings represent the results of an XPath expression.
Just as the original expression, the body of the CIQLog rule selects descen-
dants of the root with label paper and of those the author children.�e

XPath Evaluation: Basics

2

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Navigational XPath
Naïve Evaluation

7

Efficient Algorithms for Processing XPath Queries • 449

procedure process-location-step(n0, Q)
/* n0 is the context node; query Q is a list of location steps */
begin

node set S := apply Q .head to node n0;
if (Q .tail is not empty) then

for each node n ∈ S do process-location-step(n, Q .tail);
end

It is clear that each application of a location step to a context node may result in
a set of nodes of size linear in the size of the document (e.g., each node may have
a linear number of descendants or nodes appearing after it in the document).
If we now proceed by recursively applying the location steps of an XPath query
to individual nodes as shown in the pseudocode procedure above, we end up
consuming time exponential in the size of the query in the worst case, even for
very simple path queries. As a (simplified) recurrence, we have

Time(|Q |) :=
{

|D| ∗ Time(|Q | − 1) . . . |Q | > 0
1 . . . |Q | = 0

where |Q | is the length of the query and |D| is the document size, or equivalently

Time(|Q |) = |D||Q |.

The class of queries used puts an emphasis on simplicity and reproducibility
(using the very simple document 〈a〉〈b/〉〈b/〉〈/a〉). Interestingly, each ‘parent::a/b’
sequence quite exactly doubles the times both systems take to evaluate a query,
as we first jump (back) to the tree root labeled “a” and then experience the
“branching factor” of two due to the two child nodes labeled “b”.

Experiment 2: Exponential-Time Query Complexity of Saxon. In our second
experiment, we executed queries that nest two important features of XPath,
namely paths and relational operators, using Saxon. To this end, we slightly
modified our XML-documents DOC(i) to DOC ′(i) in that the b-elements are no
longer empty. Instead they now all contain a simple text node with contents “c”.
Hence, DOC ′(i) is of the form

〈a〉 〈b〉c〈/b〉 . . . 〈b〉c〈/b〉︸ ︷︷ ︸
i times

〈/a〉

The first three queries that we ran on the XML-documents DOC′(i) for i ∈
{2, 3, 10, 200} were

//*[parent::a/child::* = ‘c’]
//*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’]
//*[parent::a/child::*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’] = ‘c’]

and it is clear how to continue this sequence.
The timings summarized in Figure 2 (Experiment 2) clearly show that Saxon

requires time exponential in the size of the query.

Experiment 3: Exponential-Time Query Complexity of Internet Explorer 6.
In our third experiment, we executed queries that again nest two important

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

Efficient Algorithms for Processing XPath Queries • 449

procedure process-location-step(n0, Q)
/* n0 is the context node; query Q is a list of location steps */
begin

node set S := apply Q .head to node n0;
if (Q .tail is not empty) then

for each node n ∈ S do process-location-step(n, Q .tail);
end

It is clear that each application of a location step to a context node may result in
a set of nodes of size linear in the size of the document (e.g., each node may have
a linear number of descendants or nodes appearing after it in the document).
If we now proceed by recursively applying the location steps of an XPath query
to individual nodes as shown in the pseudocode procedure above, we end up
consuming time exponential in the size of the query in the worst case, even for
very simple path queries. As a (simplified) recurrence, we have

Time(|Q |) :=
{

|D| ∗ Time(|Q | − 1) . . . |Q | > 0
1 . . . |Q | = 0

where |Q | is the length of the query and |D| is the document size, or equivalently

Time(|Q |) = |D||Q |.

The class of queries used puts an emphasis on simplicity and reproducibility
(using the very simple document 〈a〉〈b/〉〈b/〉〈/a〉). Interestingly, each ‘parent::a/b’
sequence quite exactly doubles the times both systems take to evaluate a query,
as we first jump (back) to the tree root labeled “a” and then experience the
“branching factor” of two due to the two child nodes labeled “b”.

Experiment 2: Exponential-Time Query Complexity of Saxon. In our second
experiment, we executed queries that nest two important features of XPath,
namely paths and relational operators, using Saxon. To this end, we slightly
modified our XML-documents DOC(i) to DOC ′(i) in that the b-elements are no
longer empty. Instead they now all contain a simple text node with contents “c”.
Hence, DOC ′(i) is of the form

〈a〉 〈b〉c〈/b〉 . . . 〈b〉c〈/b〉︸ ︷︷ ︸
i times

〈/a〉

The first three queries that we ran on the XML-documents DOC′(i) for i ∈
{2, 3, 10, 200} were

//*[parent::a/child::* = ‘c’]
//*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’]
//*[parent::a/child::*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’] = ‘c’]

and it is clear how to continue this sequence.
The timings summarized in Figure 2 (Experiment 2) clearly show that Saxon

requires time exponential in the size of the query.

Experiment 3: Exponential-Time Query Complexity of Internet Explorer 6.
In our third experiment, we executed queries that again nest two important

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Navigational XPath
Naïve Evaluation

8

448 • G. Gottlob et al.

Fig. 2. Query complexity of XT and XALAN (Experiment 1) and of Saxon (Experiment 2).

We ran XALAN and XT on a 360-MHz (dual processor) Ultra Sparc 60 with
512 MB of RAM running Solaris. Saxon was run on a Windows 2000 machine
with a 700-MHz Pentium III processor and 256 MB of RAM. Finally, IE6 was
evaluated on a Windows 2000 machine with a 1.2 GHz AMD K7 processor
and 1.5 GB of RAM. The timings reported on here for Saxon and IE6 have
the precision of ±1 second, since Windows 2000 does not allow for the same
accurate timing as Solaris.

For our experiments, we generated simple, flat XML documents. Each docu-
ment DOC(i) was of the form

〈a〉 〈b/〉 . . . 〈b/〉︸ ︷︷ ︸
i times

〈/a〉

and its tree thus contained i + 1 element nodes.
In this section, the reader is assumed familiar with XPath and standard

notions such as axes and location steps (cf. World Wide Web Consortium [1999]).
A formal definition of XPath follows in subsequent sections of this article.

Experiment 1: Exponential-Time Query Complexity of XALAN and XT. In
this experiment, we used the fixed document DOC(2) (i.e., 〈a〉〈b/〉〈b/〉〈/a〉).
Queries were constructed using a simple pattern. The first query was ‘//a/b’.
The (i + 1)th query was obtained by taking the ith query and appending ‘/
parent::a/b’. For instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.

It is easy to see that the time measurements reported in Figure 2 (Experiment
1), which uses a log scale Y axis, grow exponentially with the size of the query.
The sharp bend in the curves is due to the near-constant runtime overhead of
the Java VM and of parsing the XML document.

Discussion. The runtime behavior observed can be explained with the fol-
lowing pseudocode fragment, which seems to appropriately describe the basic
query evaluation strategy of XT and XALAN.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

448 • G. Gottlob et al.

Fig. 2. Query complexity of XT and XALAN (Experiment 1) and of Saxon (Experiment 2).

We ran XALAN and XT on a 360-MHz (dual processor) Ultra Sparc 60 with
512 MB of RAM running Solaris. Saxon was run on a Windows 2000 machine
with a 700-MHz Pentium III processor and 256 MB of RAM. Finally, IE6 was
evaluated on a Windows 2000 machine with a 1.2 GHz AMD K7 processor
and 1.5 GB of RAM. The timings reported on here for Saxon and IE6 have
the precision of ±1 second, since Windows 2000 does not allow for the same
accurate timing as Solaris.

For our experiments, we generated simple, flat XML documents. Each docu-
ment DOC(i) was of the form

〈a〉 〈b/〉 . . . 〈b/〉︸ ︷︷ ︸
i times

〈/a〉

and its tree thus contained i + 1 element nodes.
In this section, the reader is assumed familiar with XPath and standard

notions such as axes and location steps (cf. World Wide Web Consortium [1999]).
A formal definition of XPath follows in subsequent sections of this article.

Experiment 1: Exponential-Time Query Complexity of XALAN and XT. In
this experiment, we used the fixed document DOC(2) (i.e., 〈a〉〈b/〉〈b/〉〈/a〉).
Queries were constructed using a simple pattern. The first query was ‘//a/b’.
The (i + 1)th query was obtained by taking the ith query and appending ‘/
parent::a/b’. For instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.

It is easy to see that the time measurements reported in Figure 2 (Experiment
1), which uses a log scale Y axis, grow exponentially with the size of the query.
The sharp bend in the curves is due to the near-constant runtime overhead of
the Java VM and of parsing the XML document.

Discussion. The runtime behavior observed can be explained with the fol-
lowing pseudocode fragment, which seems to appropriately describe the basic
query evaluation strategy of XT and XALAN.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

448 • G. Gottlob et al.

Fig. 2. Query complexity of XT and XALAN (Experiment 1) and of Saxon (Experiment 2).

We ran XALAN and XT on a 360-MHz (dual processor) Ultra Sparc 60 with
512 MB of RAM running Solaris. Saxon was run on a Windows 2000 machine
with a 700-MHz Pentium III processor and 256 MB of RAM. Finally, IE6 was
evaluated on a Windows 2000 machine with a 1.2 GHz AMD K7 processor
and 1.5 GB of RAM. The timings reported on here for Saxon and IE6 have
the precision of ±1 second, since Windows 2000 does not allow for the same
accurate timing as Solaris.

For our experiments, we generated simple, flat XML documents. Each docu-
ment DOC(i) was of the form

〈a〉 〈b/〉 . . . 〈b/〉︸ ︷︷ ︸
i times

〈/a〉

and its tree thus contained i + 1 element nodes.
In this section, the reader is assumed familiar with XPath and standard

notions such as axes and location steps (cf. World Wide Web Consortium [1999]).
A formal definition of XPath follows in subsequent sections of this article.

Experiment 1: Exponential-Time Query Complexity of XALAN and XT. In
this experiment, we used the fixed document DOC(2) (i.e., 〈a〉〈b/〉〈b/〉〈/a〉).
Queries were constructed using a simple pattern. The first query was ‘//a/b’.
The (i + 1)th query was obtained by taking the ith query and appending ‘/
parent::a/b’. For instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.

It is easy to see that the time measurements reported in Figure 2 (Experiment
1), which uses a log scale Y axis, grow exponentially with the size of the query.
The sharp bend in the curves is due to the near-constant runtime overhead of
the Java VM and of parsing the XML document.

Discussion. The runtime behavior observed can be explained with the fol-
lowing pseudocode fragment, which seems to appropriately describe the basic
query evaluation strategy of XT and XALAN.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

‣ Idea: context-value tables [Gottlob et al., 2002]

– for each expression e store a context-value table

■ contains pairs of contexts c and values v

■ such that e evaluates to v in context c

– obviously each such table has at most polynomial size

‣ Compare: evaluation of acyclic conjunctive queries on RDBS

– join tree, each intermediary result is an (at most) quadratic table

■ associating result for upper expression with result of sub-expression

9

Polynomial XPath
Bottom-up with Tabling

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Polynomial XPath
Bottom-up with Tabling

Efficient Algorithms for Processing XPath Queries • 461

Fig. 6. Context-value tables of Example 6.4.

of Q with its six proper subexpressions E1, . . . , E6. Then we compute the
context-value tables of the leaf nodes E1, E3, E5 and E6 in the parse tree,
and from the latter two the table for E4. By combining E3 and E4, we obtain
E2, which is in turn needed for computing Q . The tables8 for E1, E2, E3 and Q
are shown in Figure 6. Moreover,

E↑[[E5]] = {〈x, k, n, k〉 |〈 x, k, n〉 ∈ C}
E↑[[E6]] = {〈x, k, n, n〉 |〈 x, k, n〉 ∈ C}
E↑[[E4]] = {〈x, k, n, k %= n〉 |〈 x, k, n〉 ∈ C}.

The most interesting step is the computation of E↑[[E2]] from the tables for E3
and E4. For instance, consider 〈b1, k, n, {b2, b3, b4}〉 ∈ E↑[[E3]]. b2 is the first, b3
the second, and b4 the third of the three siblings following b1. Thus, only for
b2 and b3 is the condition E2 (requiring that the position in set {b2, b3, b4} is
different from the size of the set, three) satisfied. Thus, we obtain the tuple
〈b1, k, n, {b2, b3}〉 which we add to E↑[[E2]].

We can read out the final result {b2, b3} from the context-value table of Q .

Remark 6.5. An intuition for the Context-value Table Principle and Algo-
rithm 6.3 can also be gained from the nice fact that every acyclic conjunctive
query can be evaluated in polynomial time [Yannakakis 1981]. Now, if we as-
sume that we have each of the operations readily pre-computed as a relation,
each XPath query can be viewed as an acyclic conjunctive query over these re-
lations, and Algorithm 6.3 is a reformulation of Yannakakis’ Algorithm on such
queries (where context-value tables are intermediate join results). However,
this intuition fails in general because computed XPath values (even numbers)
take space polynomial in the size of the input, and the relations of arithmetical

8The k and n columns have been omitted. Full tables are obtained by computing the Cartesian
product of each table with {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}. This kind of restriction to the “relevant
context” will be put on a formal basis in Section 8.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

460 • G. Gottlob et al.

THEOREM 6.2. Let e be an arbitrary XPath expression, 〈x, k, n〉 ∈ C a context,
and v = [[e]](〈x, k, n〉) the value of e. Then, v is the unique value such that
〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this point to obtain an XPath evalua-
tion algorithm with polynomial-time complexity is the notion of a context-value
table (i.e., a relation for each expression, as discussed above).

Context-Value Table Principle. Given an expression e that occurs in the
input query, the context-value table of e specifies all valid combinations of con-
texts %c and values v, such that e evaluates to v in context %c. Such a table for
expression e is obtained by first computing the context-value tables of the direct
subexpressions of e and subsequently combining them into the context-value
table for e. Given that the size of each of the context-value tables has a poly-
nomial bound and each of the combination steps can be effected in polynomial
time (all of which we can assure in the following), query evaluation in total
under our principle also has a polynomial time bound.7

Query Evaluation. The idea of Algorithm 6.3 below is so closely based on our
semantics definition that its correctness follows directly from the correctness
result of Theorem 6.2.

Algorithm 6.3 (Bottom-up Algorithm for XPath)
Input: An XPath query Q ;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q ;
R := ∅; (* a set of context-value tables *)
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] '∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q)) such that E↑[[l1]], . . . , E↑[[ln]] ∈ R;
compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

Example 6.4. Consider document DOC(4) of Section 2. Let dom = {r, a,
b1, . . . , b4}, where r denotes the root node, a the document element node (the
child of r, labeled a) and b1, . . . , b4 denote the children of a in document order
(labeled b). We want to evaluate the XPath query Q , which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this evaluation can be done
using Algorithm 6.3: First of all, we have to set up the parse tree

7The number of expressions to be considered is fixed with the parse tree of a given query.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

460 • G. Gottlob et al.

THEOREM 6.2. Let e be an arbitrary XPath expression, 〈x, k, n〉 ∈ C a context,
and v = [[e]](〈x, k, n〉) the value of e. Then, v is the unique value such that
〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this point to obtain an XPath evalua-
tion algorithm with polynomial-time complexity is the notion of a context-value
table (i.e., a relation for each expression, as discussed above).

Context-Value Table Principle. Given an expression e that occurs in the
input query, the context-value table of e specifies all valid combinations of con-
texts %c and values v, such that e evaluates to v in context %c. Such a table for
expression e is obtained by first computing the context-value tables of the direct
subexpressions of e and subsequently combining them into the context-value
table for e. Given that the size of each of the context-value tables has a poly-
nomial bound and each of the combination steps can be effected in polynomial
time (all of which we can assure in the following), query evaluation in total
under our principle also has a polynomial time bound.7

Query Evaluation. The idea of Algorithm 6.3 below is so closely based on our
semantics definition that its correctness follows directly from the correctness
result of Theorem 6.2.

Algorithm 6.3 (Bottom-up Algorithm for XPath)
Input: An XPath query Q ;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q ;
R := ∅; (* a set of context-value tables *)
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] '∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q)) such that E↑[[l1]], . . . , E↑[[ln]] ∈ R;
compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

Example 6.4. Consider document DOC(4) of Section 2. Let dom = {r, a,
b1, . . . , b4}, where r denotes the root node, a the document element node (the
child of r, labeled a) and b1, . . . , b4 denote the children of a in document order
(labeled b). We want to evaluate the XPath query Q , which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this evaluation can be done
using Algorithm 6.3: First of all, we have to set up the parse tree

7The number of expressions to be considered is fixed with the parse tree of a given query.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

root

a

b1 b2 b3 b4

Efficient Algorithms for Processing XPath Queries • 461

Fig. 6. Context-value tables of Example 6.4.

of Q with its six proper subexpressions E1, . . . , E6. Then we compute the
context-value tables of the leaf nodes E1, E3, E5 and E6 in the parse tree,
and from the latter two the table for E4. By combining E3 and E4, we obtain
E2, which is in turn needed for computing Q . The tables8 for E1, E2, E3 and Q
are shown in Figure 6. Moreover,

E↑[[E5]] = {〈x, k, n, k〉 |〈 x, k, n〉 ∈ C}
E↑[[E6]] = {〈x, k, n, n〉 |〈 x, k, n〉 ∈ C}
E↑[[E4]] = {〈x, k, n, k %= n〉 |〈 x, k, n〉 ∈ C}.

The most interesting step is the computation of E↑[[E2]] from the tables for E3
and E4. For instance, consider 〈b1, k, n, {b2, b3, b4}〉 ∈ E↑[[E3]]. b2 is the first, b3
the second, and b4 the third of the three siblings following b1. Thus, only for
b2 and b3 is the condition E2 (requiring that the position in set {b2, b3, b4} is
different from the size of the set, three) satisfied. Thus, we obtain the tuple
〈b1, k, n, {b2, b3}〉 which we add to E↑[[E2]].

We can read out the final result {b2, b3} from the context-value table of Q .

Remark 6.5. An intuition for the Context-value Table Principle and Algo-
rithm 6.3 can also be gained from the nice fact that every acyclic conjunctive
query can be evaluated in polynomial time [Yannakakis 1981]. Now, if we as-
sume that we have each of the operations readily pre-computed as a relation,
each XPath query can be viewed as an acyclic conjunctive query over these re-
lations, and Algorithm 6.3 is a reformulation of Yannakakis’ Algorithm on such
queries (where context-value tables are intermediate join results). However,
this intuition fails in general because computed XPath values (even numbers)
take space polynomial in the size of the input, and the relations of arithmetical

8The k and n columns have been omitted. Full tables are obtained by computing the Cartesian
product of each table with {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}. This kind of restriction to the “relevant
context” will be put on a formal basis in Section 8.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Polynomial XPath
Bottom-up with Tabling

11

‣ Result: polynomial (combined) complexity for XPath evaluation

– bottom-up: O(|D|5 ⋅|Q|2) time and O(|D|4 ⋅|Q|2) space

■ why such large constants? context (3) + concat, arithmetics (additional 2)

‣ Disadvantage: bottom-up processing considers too many nodes

– no “context” in the query evaluation

■ e.g., //a//b considers all b’s in the document rather than only b’s in a’s

‣ Solution: top-down evaluation, but set-based

– details: see exercises

‣ Navigational XPath: can be evaluated in linear time and space

XPath Evaluation: Relational

3

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Mapping XML to Databases

‣ Aim: Find mapping (and back mapping)

– from XML to relational data model

– from XPath to relational algebra/SQL

– such that:

– nevertheless: labeling schemes can also benefit “native” XML storage

13

Mapping XML to Databases Introduction

Exploiting DB technology

In doing so, our main objective is to use as much of existing DB

technology as possible (so as to avoid having to re-invent the wheel).

XQuery operations on trees, XPath traversals and node
construction in particular, should be mapped into operations over
the encoded database:

Our goal: let the database do the work!

Tree
XPath/construction

��

E
��

Tree

Rel
relational query

�� Rel

E−1

��

Obviously, E needs to be chosen judiciously. In particular, a faithful
back-mapping E−1 is absolutely required.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 324

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Mapping XML to Databases

14

Mapping XML to Databases Introduction

What makes a good (relational) (XML) tree encoding?

Hard requirements:

1 E is required to reflect document order and node identity.
Otherwise: cannot enforce XPath semantics, cannot support ¡¡ and
is, cannot support node construction.

2 E is required to encode the XQuery DM node properties.
Otherwise: cannot support XPath axes, cannot support XPath node
tests, cannot support atomization, cannot support validation.

3 E is able to encode any well-formed schema-less XML fragment
(i.e., E is “schema-oblivious”, see below).

Otherwise: cannot process non-validated XML documents, cannot
support arbitrary node construction.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 329

Mapping XML to Databases Introduction

What makes a good (relational) (XML) tree encoding?

Soft requirements (primarily motivated by performance concerns):

4 Data-bound operations on trees (potentially delivering/copying lots
of nodes) should map into efficient database operations.

XPath location steps (12 axes)

5 Principal, recurring operations imposed by the XQuery semantics
should map into efficient database operations.

Subtree traversal (atomization, element construction, serialization).

For a relational encoding, “database operations” always mean “table
operations” . . .

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 330

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Dead End: Large Object Blocks

‣ XML document is stored in a CLOB or BLOB

– character or binary large object block

– XML document is opaque to the database engine

■ a separate XML parser & XPath/XQuery evaluator are needed

– not a relational encoding

‣ Nevertheless used in SQL/XML standard

– roughly speaking “relational world” + “XML world”

– fairly separate, originally not even the atomic types were compatible

15

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Dead End: Schema-based Encoding

16

Relational Tree Encoding Dead Ends

Dead end #2: Schema-based encoding

XML address database (excerpt)
¡person¿

¡name¿¡first¿John¡/first¿¡last¿Foo¡/last¿¡/name¿

¡address¿¡street¿13 Main St¡/street¿

¡zip¿12345¡/zip¿¡city¿Miami¡/city¿

¡/address¿

¡/person¿

¡person¿

¡name¿¡first¿Erik¡/first¿¡last¿Bar¡/last¿¡/name¿

¡address¿¡street¿42 Kings Rd¡/street¿

¡zip¿54321¡/zip¿¡city¿New York¡/city¿

¡/address¿

¡/person¿

Schema-based relational encoding: table person

id first last street zip city

0 John Foo 13 Main St 12345 Miami

1 Erik Bar 42 Kings Rd 54321 New York

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 332

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

‣ observe for each element type what sub-elements it can contains

– best done from DTD/XML Schema but can be discovered

– tailored to one specific schema

‣ works reasonably well for very regular XML data

‣ fails for flexible schema (like HTML)

– mixed content

– support for horizontal axes (following etc.), no order support

– updates that change the schema

17

Relational XPath Evaluation
Dead End: Schema-based Encoding

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Dead End: Schema-based Encoding

18

Relational Tree Encoding Dead Ends

Dead end #2: Schema-based encoding

Irregular hierarchy
¡a no=”0”¿

¡b¿¡c¿X¡/c¿¡c/¿¡/b¿

¡/a¿

¡a no=”1”¿

¡b¿¡c¿Y¡/c¿¡/b¿

¡/a¿

¡a¿¡b/¿¡/a¿

¡a no=”3”/¿

A relational encoding

id @no b

0 0 α
3 1 β
5 NULLa γ
6 3 NULLb

id b c

1 α X

2 α NULLc

4 β Y

Issues:

Number of encoding tables depends on nesting depth.

Empty element c encoded by NULLc , empty element b encoded by
absence of γ (will need outer join on column b).

NULLa encodes absence of attribute, NULLb encodes absence of
element.

Document order/identity of b elements only implicit.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 334

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Dead End: Adjacency-based Encoding

19

Relational Tree Encoding Dead Ends

Dead end #3: Adjacency-based encoding

Adjacency-based encoding of XML fragments
¡a id=”0”¿

¡b¿fo¡/b¿o

¡c¿

¡d¿b¡/d¿¡e¿ar¡/e¿

¡/c¿

¡/a¿

≡

a•

@id
•

��

��������

b•
��

��

text
•
��

text
•

�� �� c•
��

��������

d•
��

��

text
•
��

e•
�� ��

text
•
��

Resulting relational encoding

id parent tag text val

0 NULL a NULL NULL

1 0 @id NULL ”0”

2 0 b NULL NULL

3 2 NULL ”fo” NULL

4 0 NULL ”o” NULL

5 0 c NULL NULL
...

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 335

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Relational XPath Evaluation
Dead End: Adjacency-based Encoding

‣ Idea: store the parent id for each node

– looks promising for document order, node identity, reconstruction

– but: descendant, ancestor, following, preceding

■ require unbounded number of joins → SQL recursion

■ horribly inefficient

‣ what we need is a more “expressive” label than just parent id

– such that we can evaluate (all/important) XPath axes given only the label

■ ideally: constant or logarithmic

– such that the iteration over all related nodes for each XPath axes is efficient

■ ideally: linear

– such that the space needed for the labels is linear or at worst O(n log n)

20

Labeling Schemes for XML

4

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Labeling Schemes for XML
Overview

‣ Aim for each XPath axis (but at least child, descendant):

– given two node labels constant or logarithmic test if related by axis

– given a node label linear or polylinear iteration over nodes related by axis

– size of a node label should be constant or logarithmic

‣ Given an XML document

– labeling should be computable in polynomial (better: linear) time

‣ Three main classes of labeling schemes

– interval-based labelings: numeric labels & intervals or ranges to describe
the related nodes per axis

– prefix- or path-based labelings: labels represent root-to-leaf paths

– arithmetic or multiplicative labelings: arithmetic relations between labels

22

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Labeling Schemes for XML
Sample Document

23

3.1. OVERVIEW

<?xml version="1.0 " ?>
<book>
<title>XML </title>
<chapter>

<section>database </section>
<section>XML </section>

</chapter>
<chapter>

<section>
<figure>Information Retrieval </figure>

</section>
</chapter>
<appendix>

<section>index </section>
</appendix>

</book>

a. XML serialization b. document tree D with preorder labels

Figure 3.1: Preorder labelling of a sample document tree.

These conditions can be more or less easy to fulfill in a given retrieval system. Choosing a suitable

labelling scheme depends on a number of factors:

1. query language: Which structural constraints are allowed? How is textual content retrieved?

2. nature of the data: How large is the document collection? Are the documents very heterogeneous

in structure? Do they change often? If so, is the document structure affected

or mainly their textual content?

3. storage: How are documents represented? Is it a native, hybrid, or relational system?

How much storage space is available?

4. retrieval: How are document nodes retrieved? Which index structure are available?

Does the system use a centralized structural summary?

Labelling schemes differ greatly in how well they fit a given query language and document collection in the

presence of specific storage requirements or retrieval and indexing techniques. The following list includes

the most salient properties of labelling schemes that need to be reconciled with the demands and constraints

of the retrieval system:

1. expressivity: Which tree relations can be inferred from the node labels, and in which way?

2. efficiency: How fast is the manipulation of node labels during query evaluation?

3. storage: How much space is occupied by the node labels on disk and in memory?

What is the average and the maximal label size?

4. robustness: How are the node labels updated when documents change? Do local changes

affect a large number of labels?

Section 3.2 below rephrases the question of expressivity in a more precise way, introducing two dis-

tinct ways of matching non-unary query constraints that are fundamental not only in the context of labelling

schemes, but also for all following contributions presented in this work. The rest of this chapter reviews a

number of different labelling schemes from the literature and compares them in terms of their expressivity,

efficiency for query evaluation, storage demands, and robustness against changes to the document collec-

tion. We explain representative approaches from three distinct classes of labelling schemes in detail (see

Sections 3.3 to 3.5). The classification is based on fundamental principles underlying the different labelling

procedures. The final comparison in Section 3.6 also highlights some open problems and possible optimiza-

tions. To illustrate the great diversity of labelling schemes that have been developed over more than twenty

years, we explicitly include references to many approaches that are not reviewed here. A more exhaustive

survey of labelling schemes for XML and tree database is currently under way [Weigel and Schulz 2007].

18 Felix Weigel

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

24

3.3. SUBTREE ENCODINGS

a. Pre/Max b. Order/Size

c. Extended Preorder d. Pre/Post

e. Start/End

Figure 3.3: Selected subtree encodings applied to the document tree in Figure 3.1 b. on page 18. In c.,

shaded triangles symbolize subtrees of “virtual” nodes.

24 Felix Weigel

Labeling Schemes for XML
Interval Labelings I

Label: [pre, max(pre of desc)]
desc(v,w) = pre(v) ≤ pre(w) ≤ max(v)
foll(v,w) = pre(w) > max(v)
Updates: both change

Label: [pre, number of desc)]
desc(v,w) = pre(v) ≤ pre(w) ≤ pre(v) + size(v)
foll(v,w) = pre(w) > pre(v) + size(v)
Updates: only pre changes

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

25

‣ both pre/max and order/size need linear time for each update

‣ improvement: leave virtual “gaps” for inserting nodes

– here: virtual gaps represented as gray rectangles of size 5

– label with order/size

■ but as in the “virtual” tree

‣ called: “extended preorder”

3.3. SUBTREE ENCODINGS

a. Pre/Max b. Order/Size

c. Extended Preorder d. Pre/Post

e. Start/End

Figure 3.3: Selected subtree encodings applied to the document tree in Figure 3.1 b. on page 18. In c.,

shaded triangles symbolize subtrees of “virtual” nodes.

24 Felix Weigel

Labeling Schemes for XML
Interval Labelings II

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

26

‣ Pre-/Post-Encoding

– very close to stream of XML start and end tags

– allows to compute all structural XPath axes

Labeling Schemes for XML
Interval Labelings III

3.3. SUBTREE ENCODINGS

a. Pre/Max b. Order/Size

c. Extended Preorder d. Pre/Post

e. Start/End

Figure 3.3: Selected subtree encodings applied to the document tree in Figure 3.1 b. on page 18. In c.,

shaded triangles symbolize subtrees of “virtual” nodes.

24 Felix Weigel

Label: [pre, post]
desc(v,w) = pre(v) ≤ pre(w) ∧ post(w) ≤ post(v)
foll(v,w) = pre(w) > post(v)

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

27

Streched Pre/Post Plane

Streched pre/post plane

“Stretched” (or coupled) preorder/postorder ranks

Perform a depth-first, left-to-right traversal of the skeleton tree.
Maintain counter rank (initally 0).

1 Whenever a node v is visited first, assign pre(v) ← rank ; increment
rank .

2 When v is visited last, assign post(v) ← rank ; increment rank .

Example
a•

b••������

c
••

d
••��

�

e
••

��
�

f••������

g
••��

�
h••

��
�

i
••��

�

j
••

��
�

0

1

2

3 4 5 6

7

8 9

10 11 12

13 14 15 16

17

18

19

This encoding is also known as “start–end” numbering.
Torsten Grust (TUM) Database-Supported XML Processors Winter 2007/08 381

Labeling Schemes for XML
Start/End = Stretched Pre/Post Encoding

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

28

Labeling Schemes for XML
Start/End = Stretched Pre/Post Encoding

Streched Pre/Post Plane

Streched pre/post plane

start-end numbering
a•

b••������

c
••

d
••��

�

e
••

��
�

f••������

g
••��

�
h••

��
�

i
••��

�

j
••

��
�

0

1

2

3 4 5 6

7

8 9

10 11 12

13 14 15 16

17

18

19

Stretched pre/post plane

�0,0�
−1
−−
−−5
−−
−−
−10
−−
−−
−15
−−
−−

|
1
| | | |

5
| | | | |

10
| | | | |

15
| | | |

•a

•b•c

•
d

•e

•f

•g

•h
•i
•j

post
��

pre��

Node identifiers of bit width n encode 2n−1 nodes.

Torsten Grust (TUM) Database-Supported XML Processors Winter 2007/08 382

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

29

Labeling Schemes for XML
Start/End = Stretched Pre/Post Encoding

Streched Pre/Post Plane

XPath axes in the streched pre/post plane
Node distribution in the stretched pre/post plane has interesting
properties:

The axes window(·) predicates continue to work as before.

Further:

Characterization of descendant axis

Node v is selected by c/descendant::node(), iff

pre(v) ∈ (pre(c), post(c)) or post(v) ∈ (pre(c), post(c))

Subtree size (exact, no estimation)

For any node v :

size(v) = 1/2 · (post(v)− pre(v)− 1)

Torsten Grust (TUM) Database-Supported XML Processors Winter 2007/08 383

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

30

Labeling Schemes for XML
Start/End = Stretched Pre/Post Encoding

Streched Pre/Post Plane

c/descendant::node()

�
�
�
�
�
�
�
�
�
�
�
�

������������post(c)

pre(c)

post(c)pre(c)

∅

∅

∅

∅
�0,0�

−1
−−
−−5
−−
−−
−10
−−
−−
−15
−−
−−

|
1

| | | |
5

| | | | |
10

| | | | |
15

| | | |

post
��

pre��

•a

•b◦c

•
d

•e

•f

•g

•h

•i
•j

Torsten Grust (TUM) Database-Supported XML Processors Winter 2007/08 384

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

‣ Summary: start/end encoding

– label size is larger than for pre/post-encoding

– but: windows for major XPath axes are much tighter

– size of subtrees can be precisely computed

– update behavior is unchanged

‣ Essentially we can use the same translation from XPath for SQL

– for start/end as for pre/post

– see following slides

31

Labeling Schemes for XML
Start/End = Stretched Pre/Post Encoding

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

32

Relational XPath Evaluation
XPath Accelerator Pre/Post-Encoding

XPath Accelerator Encoding Pre-Order and Post-Order Traversal Ranks

XPath Accelerator encoding

XML fragment f and its skeleton tree
¡a¿
¡b¿c¡/b¿
¡!--d--¿
¡e¿¡f¿¡g/¿¡?h?¿¡/f¿
¡i¿j¡/i¿

¡/e¿
¡/a¿

a•
b•������

c
• d

• e•������

f•���

g•
���

h
•

���
i•

���

j
•

0

1
2

3 4
5

6 7
8
9

0
1 2

3 4
5

6
7

8

9

Pre/post encoding of f : table accel
pre post par kind tag text
0 9 NULL elem a NULL
1 1 0 elem b NULL
2 0 1 text NULL c
3 2 0 com NULL d
4 8 0 elem e NULL
5 5 4 elem f NULL
6 3 5 elem g NULL
7 4 5 pi NULL h
8 7 4 elem i NULL
9 6 8 text NULL j

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 343

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

33

Relational XPath Evaluation
Translating Relation Steps

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

Relational evaluation of XPath location steps

Evaluate an XPath location step by means of a window query on the
pre/post plane.

1 Table accel encodes an XML fragment,

2 table context encodes the context node sequence (in XPath
accelerator encoding).

XPath location step (axis α) ⇒ SQL window query

SELECT DISTINCT v �.*
FROM context v , accel v �

WHERE v � INSIDE window(α, v)
ORDER BY v �.pre

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 344

like context value table

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

34

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

10 XPath axes41 and pre/post plane windows

Window def’s for axis α, name test t (∗ = don’t care)

Axis α Query window window(α::t, v)
pre post par kind tag

child � (v .pre, ∗) , (∗, v .post) , v .pre , elem , t �
descendant � (v .pre, ∗) , (∗, v .post) , ∗ , elem , t �
descendant-or-self � [v .pre, ∗) , (∗, v .post] , ∗ , elem , t �
parent � v .par , (v .post, ∗) , ∗ , elem , t �
ancestor � (∗, v .pre) , (v .post, ∗) , ∗ , elem , t �
ancestor-or-self � (∗, v .pre] , [v .post, ∗) , ∗ , elem , t �
following � (v .pre, ∗) , (v .post, ∗) , ∗ , elem , t �
preceding � (∗, v .pre) , (∗, v .post) , ∗ , elem , t �
following-sibling � (v .pre, ∗) , (v .post, ∗) , v .par , elem , t �
preceding-sibling � (∗, v .pre) , (∗, v .post) , v .par , elem , t �

41Missing axes in this definition: self and attribute.
Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 345

Relational XPath Evaluation
From Axes to Pre/Post-Windows

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

35

Relational XPath Evaluation
From Pre/Post-Window to SQL Predicate

XPath Accelerator Encoding Relational Evaluation of XPath Location Steps

Pre/post plane window ⇒ SQL predicate

descendant::foo, context node v

v � INSIDE �(v .pre, ∗), (∗, v .post), ∗, elem, foo�
≡

v �.pre ¿ v .pre AND v �.post ¡ v .post AND
v �.kind = elem AND v �.tag = foo

ancestor-or-self::*, context node v

v � INSIDE �(∗, v .pre], [v .post, ∗), ∗, elem, ∗�
≡

v �.pre ¡= v .pre AND v �.post ¿= v .post AND
v �.kind = elem

Torsten Grust (WSI) Database-Supported XML Processors Winter 2008/09 346

Evaluating XPath with XML Labeling Schemes

PROGRAMMIER- UND MODELLIERUNGSSPRACHEN

INSTITUT FÜR INFORMATIK
LEHR- UND FORSCHUNGSEINHEIT FÜR

Summary

‣ you need to know

– complexity of XPath query evaluation

■ how to achieve polynomial complexity

– how to map XML to relational databases

■ weaknesses of CLOB/BLOB-based, schema-based, adjacency-based storage

■ what is a labeling scheme, what is a good labeling scheme

■ classes of labeling schemes

– details of pre/post-encoding

– details of start/end-encoding

– translation of XPath to SQL under pre/post- or start/end-encoding.

36

